163

Continuation Semantics for PROLOG with Cut

A. de Bruin
Economische Faculteit, Erasmus Universiteit
Postbus 1738, NL-3000 DR Rotterdam
E.P. de Vink

Faculteit Wiskunde & Informatica, Vrije Universiteit
De Boelelaan 1081, NL-1081 HV Amsterdam

ABSTRACT

We present an operational model © and a continuation based denotational model 2 for
a uniform variant of Prolog, including the cut operator. The two semantical definitions make
use of higher order transformations & and 'V, respectively. We prove © and 9 equivalent by
comparing yet another pair of higher order transformations @ and 'V, that yield ® respec-
tively ‘¥ by application of a suitable abswraction operator.

1. Introduction

In [BV] we presented both an operational and a denotational continuation based semantics for the core
of PROLOG, and we proved these two semantics equivalent. We used a two step approach, by first
deriving these results for an intermediate language, obtained by stripping the logic programming
aspects (substitutions, most general unifiers and all that) from PROLOG. This resulted in the abstract
language B in which only the control structures from PROLOG remained, such as the backtrack
mechanism and the cut operator. After having compared the operational and denotational meanings for
B successfully we generalized as a next step the two semantics to the case of PROLOG while preserv-
ing their equivalence.

The language B will be investigated again in this paper, but now more a a guinea pig. We will use
it to test a new idea for proving equivalence of operational and denotational semantics based on cpo’s.
The main virtue of B in this respect is that although it is a sequential language it has a nontrivial con-
trol structure. In fact, the denotational semantics of this language needs three continuations to ade-
quately describe the flow of control.

We will discuss our new approach to equivalence proofs by comparing it with the standard way
these proofs have been conducted so far. To this end, we first spend a few words on operational seman-
tics. The main idea behind this brand of semantics is to describe how an abstract machine executes a
program in the language of interest. The abstract machine is defined by specifying the configurations it
can be in, and by introducing a step function, mapping configurations to configurations, thus describing
the behaviour of the abstract machine. Starting from an initial configuration C,, repeatedly applying

164

the step function will deliver a number of intermediate configurations C,, Cy, Ca, .. with
Ci+1 = step C;. The computation terminates when a final configuration has been reached.

Our operational meaning function ¢ abstracts from these intermediate results however, defining
the meaning O s] of a statement s as a state transformation, mapping initial states to final states
while recording the wanted observations. The final state is obtained by iterating the step function and
this iterations can nicely be captured by taking a fixed point of a suitable higher order operator ®.

Notice that, due to the abstraction of (most of) the intermediate configurations we made, in gen-

eral the operator @ will not have a unique fixed point. For instance, if iterating the step function fails to
produces a final configuration, i.e. we deal with a nonterminating computation, and in that case we put
0(s § =L Other fixed points of @ are possible, yielding different results for such s. The fact that
fixed points are not unique complicates maters when it comes to prove ¢ equivalent to 2, the denota-
tional meaning function. The standard technique in such a proof is to show that a step of the abstract
machine does not affect the denotational meaning of the configurations being transformed. More
technically, if we have that step C = C’, and if we extend 2 to a function ¥ taking configurations as
arguments, then we have to show hat $C = #C’. From this result we will then be able to infer hat
FCinitiat =9Cfinati, by induction on the number of steps needed. We then deduce that
¥ Pislo=0[s]o.
However, there is a flaw in this line of reasoning. The result (§) is only valid for terminating computa-
tions. If iterating the step function does not produce a final configuration then the above argument does
not work. This means that in order to complete the equivalence proof 2 = 0, we have to derive the
result that O s] 6 = L implies 2 s] 6=_L. Unforwnately this takes at least as much effort as was
needed to derive the previous result, see for example the proofs in [Bal].

Now if the operator ® would have a unique fixed point then it would not be necessary to derive
this additional result. Uniqueness is guaranteed for instance when one does not use cpo’s and a con-
tinuity argument to ensure the existence of the fixed points, but when complete metric spaces are used
instead and the operators are contracting functions on these spaces. For in that case Banach’s theorem
can be applied. In [KR] unicity of the fixed point of the operational higher order operator ® has been
exploited to derive compact equivalence proofs for operational and denotational meanings along the
lines skeiched above. A similar line of reasoning has been used in [BM]. The fact that our operator ®
admits more than one fixed point seems to be an essential consequence due to the fact that we
abstracted away from the intermediate configurations. For instance, it is not possible to define in a
straightforward way a contraction on metric spaces which yield the same operational semantics. The
idea behind our equivalence proof is to try to take best of both worlds.

We introduce a slightly less abstract operational semantics using a new operator & that does have
a unique fixed point. Our semantics is made more concrete because it does not simply deliver observ-
ables & as the result of a computation, but also additional information. Outputted states 0 are preceded
by a number of clock ticks, a row of T's. The idea is that each 7 in this row corresponds with the execu-
tion of an elementary action by the abstract machine, i.e. one iteration of the step function. Similarly
for a nonterminating computation, we do not deliver L but an infinite row of 1’s instead. So L is refor-
mulated as internal divergence. Now, for the corresponding meaning functions ® and 9 a compact
equivalence proof can be given. In order to establish from this the equivalence of our original functions
0 and 9 it is sufficient to show that, apart from proving 0 =9, there exists an abstraction operator p,
"a T-remover”’ so to speak, such that for all s and ¢ we have *) Ofs] 0=p(@[[x 1o) and

165

D[sho=p(D[s Io).

In the next section we will show that this idea can be made to work for a simple language, the
most complicated construct of which is the while statement. However it will also become clear that the
complexity of the over all proof has not diminished. This is caused by the fact that substantial addi-
tional work ahs to be performed in proving the equalities (*) above. On the other hand, the reasoning in
these proofs is to a great extent independent of the particular language investigated. The result on the
operational semantics is valid for each operational semantics derived from (deterministic) step func-
tions and in the proof of the other result in (*) a number a generic elements seems to be present as well,
which can be carried over unaltered to similar proofs for other languages. These observations are
worked out in section 3, where we present a more general theory on the relation between abstract
domains and concretizations thereof like the ones discussed above. We show that the abstract domains
can be considered as so called retracts of the more concrete ones. We will derive a few theorems,
related to those of [BMZ) and [Me] that enable us to prove results as in (*) in a more smooth and
elegant way. In the remaining sections this theory is tested using the above described language & : Sec-
tion 4 describes the operational and denotational semantics of 8. Section 5 will be devoted to the
actual equivalence proof.

Acknowledgements. From the above it will be clear that our work relies heavily on that of others.
The immediate starting point of this paper is [KR] where for the first time the observation was made
that compact equivalence proofs could be realized using higher order transformations. (But see also
[BBKM].) We most notably benefit from the work on metric semantics of concurrency perform by De
Bakker e.a. E.g. [BZ], [BKMOZ], [BM], [Ba2). It is a pleasure to thank the forum formed by the
members of the working group on concurrency, - Jaco de Bakker, Frank de Boer, Joost Kok, Jan Rutten
and others - for their comments and the good scientific atmosphere they provided. Finally we are grate-
ful to M279 for her hospitality.

2. A Simple Example: the While Statement

In this section we will illustrate the basic idea behind our new equivalence proof, by sketching how
such a proof can be given for the very simple language defined below.

(2.1) DEFINITION The set of elementary statements EStat is defined by
e n=x:=t| if b then 5| else s2 fi| while bdo s od. The set of statements Stai is defined by
s u=¢g| e;s.

As remarked in section 1, an operational semantics is defined via an abstract machine. Such a
machine, called a transition system, can be specified by giving its configurations together with a rela-
tion between configurations which describes the step function. To avoid too many details we assume
the existence of an interpretation / from which the effect of executing an assignment statement can be
obtained, as well as the value of boolean expressions. Notice that there is no transition defined from
configurations of the form [€,6]. These are the final configurations corresponding to terminated

166

computations.

(2.2) DEFINITION

(i) The set of configurations Conf is defined as the collection of statement-state pairs [5,6], i.e.
Conf ={[s,0]]| seSwat,ceX).

(ii) The step function — is the smailest subset of Conf x Conf s.i.
[x:=t,0] = [s,0] whereo'=I[x:=t]o
Lif b then s else 53 fi;s,6] = [sis.0] fIfbjo=u
Lif b then sy else s2fi;s,6] = [sus,6] fI[blo=f
[while b do s’ od;s,6] — [s";while b do 5" od;s,6]1 ifI[b]lo=u
[while b do s" od;s, 0] = [s,6] ifI[blo=jf

(iti) The operational semantics 0:Sta1 - X —> X, is defined by O[s)6 = p®([s,6]) where
®: [(Conf - I) = (Conf = X1)] is given by ®0{¢,6] =6, POC =0C’if C - C’, and I,
denotes the flat cpo with least element L.

Our denotational semantics will use continuations. Although this seems to be a bit too heavy for
such a simple language, we do not use direct semantics for two reasons. First of all, the equivalence
proof will proceed more smoothly when using continuations and secondly, the language $ cannot be
given a satisfactory direct semantics. (In order to model the cut operator this way one has to resort to
cut-flags or other kinds of indicators. See [JM], [DM], [Bd], [Vi].) Since this section is intended as an
introduction, we want the two equivalence proofs for 3 and the simple language to be as similar as pos-
sible.

Our meaning function 2 is defined as the least fixed point of a higher order operator ‘¥. In fact, it
does not matter much how 2 is defined (as long as it remains denotational), the more usual approach
based on environments as in [Bal] would work equally well, cf. [BM]. The style of defining here is
closer to [KR]} which we take as a starting point.

(2.3) DEFINITION
(i) Domains: The collections Cont of continuations and the set Meaning of meanings are given by
Cont = ¥ — L, and Meaning =Stat = [Cont 2 X - X].
(ii) Functions: The denotational semantics @ : Sta1 — X — X, is defined by 2[s Jo=p¥[s] E,0
where &, =A0.0 and V' [Meaning — Meaning] is given by
YMlel&o=Eo,
YMIx=t =80 ifd=I[x=1]0o
WM if b then s else s2fi 1E§6=M[s 1&c ifIlbJo=u
WM if b then syelse s2fi 1Eo=M[s218c iflIlblo=f
WM while bdosod | Ec=M[s] { ML while bdo s od 1€ }o ifi[blo=un
WM while bdo s od |Ec=Ec ifI[blo=f
YMes 1Ea=M[e] {MIs]E]lo.

Before giving the present equivalence proof, we discuss the old approach for a while. First of all
onc proves 0 2. The idea is to extend 2 to a intermediate function # defined on configurations:
5,61 =2[s 0. One then proves ®F =7, in essence by checking this for all possible

167

configurations (cf. 2.2.ii, and the proof of 2.7). From this result © <39 follows immediately, but in fact
we have more than that. Because pd delivers results in X, a flat domain, we have that for all s and ¢
such that p®[s,06] =0’ # L, also J[5,6] =0 holds. Therefore, in order to complete our proof we
need to show O s Jo=1 = D[s] 0=1L. This is most easily accomplished by showing that for all
approximations Wi L of 2 we have Wil <0, and this can be proved by induction on i, checking all
possible forms a statement s can take.

Now this second half of the equivalence proof would not be needed if ® would have a unique
fixed point: for ®F = F would then imply F = n® and thus © =2. The idea now is to make P a little
bit more concrete, making it deliver result in the cpo £% of streams instead of the flat domain £;. This
will be accomplished by prefixing a result ¢’ with a number of t’s, each of which denotes a "clock
tick", corresponding with an elementary step of our abstract machine. The effect of all this will be that
our new operator ® will indeed have a unique fixed point (cf. lemma 2.5).

(2.4) DEFINITION
@ Put £=X U {1} for some distinguished te E. I is ranged over by 8. Let £ denote the cpo of
streams over £, cf. [Me], [MV].
(ii) ‘The step function — is the smallest subset of Conf x E x Conf st.
[x:=t,6] 5+:[s5,06’] whered’=I{{x:=t]oc
[if b then s, else 53 fiis.6] = ¢[sus.o]l fI[blo=u
[if b then s) else 53 fiis,06] =+ [sus,0] fI[blo=f
[while b do s’ od;s,6] =< [s";while b do s od;s,6] ifI[blo=u
[while b do s’ od;s5,6] =<.[s,0] fI[blo=f
(iii) The operational semantics :Stat =X — I is defined by O s 6 = pd([s,6]) where
de [(Conf — E5) = (Conf — E9)] is given by ®O[e,6] =06, POC =1.0C*if C - C".

Notice that definitions 2.2(ii) and 2.4(ii) are exactly the same except for the labels 1.

It is instructive to observe the relation between the functions @ and ©. We observe, without proof
that O s [6=0¢ & FkeN:O[sJo=1.0’and 6 s J6=L < O[s [o =12 Of course a similar
result is true for p® and pd. Notice that this implies that for all configurations C we have that pdC is
maximal in £5° and this again means that pud itself is maximal. Therefore p® is not only the least fixed
point of ®; it is the only one!

(2.5) LEMMA ® has a unique fixed poins.

PROOF We prove hat p® is maximal, from which it follows hat ud is unique. The proof is by
contradiction. Suppose p® is not maximal. Then there exists at least one C with the property that
udC is not maximal in £, i.e. udC must be of the form x.L. Now choose from the set of all confi-
gurations with this property one configuration, say C, such that u(if has minimal length.

Because pd is a fixed point, we have p&C = (pdC) = T.pdC’ for some C’e Conf st. C - C".
This however means that p®C” is also of the form x..L, which contradicts the minimality of | udC| .
o

We now have to define a denotational semantics 9 which should be equivalent with 0. This is

168

done below. Notice that some care has to be taken, where T's are added in the defining clauses of ¥ as
compared to the definition of ‘¥ in 2.3. (Notice furthermore that, although our notation does not show
this, the standard continuation £, now delivers a one element stream from $st, whereas in definition
2.3 a single element in X, was delivered. We tacitly consider I, as a subcpo of Esr)

(2.6) DEFINITION
(i) Domains: The collections Consi™ of continuations and the set Meaning™ of meanings are given by
Cont™ = X — £ and Meaning™ = Stat — [Cont” = L - $s7.
(ii) The denotational semantics D:Star -5 ¥ — I is defined by Ils G:p‘i‘l{s 1&,0 where
£, =Ao.c and ¥: [Meaning™ — Meaning™] is given by
YMIelto=Eo,
YM[x=t JEc =180 ifa’=I[x=t]o
WM if bthen syelse s2fi JEo=1-M[s11& ifI[blo=u
WM if b then syelse sy fi 1Ec=t-M[52180 ifI[bllo=f
WM{ while bdo s od 1o =1-M[s] (M whilebdosod 1§} ifI[b]o=n
WM while bdo s od 1Eo=1:Ec ifI[bTo=f
WMe;s 1Ec=MLe 1 {MIs1E}o

After extending 9 to the intermediate function F acting on configurations we have the following
main lemma.

(2.7) LEMMA Define 3 : Conf — £ by ¥([5,61) = D[s 1 6. Then it holds that ®F = 3.

PROOF We have to prove ®FC =3C for all configurations C. We only consider the case
C =[while b do s’od;s,6] with I[bJo=u. Then on the one hand djc
toF[s":while b do s’ od;s.6] = 1D s":while b do s’ odis 1§,0, and on the other jc
D[while bdo s’ od;s 1E6 = Pl whilebdos od 1 (DLsT&s }O
1305’1 (DI while bdo s’ od I DLs V&, } o =1D[s" 1 (D while b do s* odis 18, }o
D[s":while bdo s"od;s 18,6. O

L}

[}

This lemma and lemma 2.5 establishes the firs) part of our proof, viz. 0 =9 since this follows
from pd=5. In order to derive 0 =2 we introduce an operator which removes the 1’s from the
results of § and 9, cf. the remarks following definition 2.4. This abstraction operator sirip is defined
as follows.

(2.8) DEFINITION The function swripe($95%,1 is defined by swrip=pP where
Pe[[E%—%,] = [E7—Z]] is defined by PpL = 1, Ppe =€, Pp(tx) = px, Pp(C.x) = G.

So strip yields the first proper state of a stream over £. Notice that this operator P indeed has the
functionality as claimed, and that therefore strip is continuous. The next two lemma’s now furnish the

last results needed to prove 0 = 2.

(2.9) LEMMA Forall s andc: O s] 0=xtrip(@|[s J o).

169

PROOF The same result holds for all approximations of 0 and 0, ie. we have ®i L = sirip ($i 1).
This can be proved by induction on i. The lemma no follows from the continuity of strip. O

(2.10) LEMMA For all s and 6: D[s T o =sirip(2[s 1 6).

PROOF We first prove a somewhat stronger fact about the approximations: If for some Ee Cont,
Ee Cont™ we have £ =strip°§, then for all i, s and o: Wil s] & = strip(WiL s 1 Eo). This fact
can be proven by induction on i, checking all possibilities for s. As an example we consider the state-
ment while b do s od, evaluated in a state in which b is true. WiL[while bdo s od JEC =
Wi-11[s]| { Wi-!L[while b do s od 1 & }6. Now from the induction hypothesis we learn that
Wi-11[while bdo s od 1§ = strip(¥i-1L[while b do s od] €) and applying the induction
hypothesis again, using this fact we infer ‘Wi-lL[s] { WYi-li[while bdosod 1) =
strip(1+ Wi L while b do s 0d § E0). O

From the above lemmas and lemma 2.7 we derive as outlined before the equivalence of the opera-
tional and denotational semantics for 3.

(2.11) THEOREM 0 = 9. O

Let us compare the new equivalence proof with the older one discussed after definition 2.3.
Indeed, the core of our proof (lemma 2.7) is more compact now, but we had to pay a price: lemmas 2.9
and 2.10 had to be proven as well. For lemma 2.9 this is no big problem though. This proof does not
depend on the underlying language, but only on the way the operator ® has been derived from the tran-
sition system. Therefore this lemma can be used for other languages as well, (cf. section 5), it needs to
be proven only once.

The proof of lemma 2.10 seems to depend more on the underlying language. At first sight it looks
like the work we disposed of in lemma 2.7 now bounces back at us. However in this proof as well there
is a language independent part. In order to see this it is worthwhile to study the relation between defini-
tion 2.6 and 2.3. In the latter one we inserted 1's while in the former one we do not have such clock
ticks. Notice however that if we omit the t’s from definition 2.6 we get definition 2.3 back. Notice
also that there is a similar relation between definitions 2.4 and 2.2. With some abuse of notation this
relation can be written as (2.2) = sirip (2.4) and (2.3) = strip(2.6).

Now these definitions established operators @, ¥/, ® and W, and by taking least fixed points we
derived at the functions 0, 9, © and 9. For these resultant functions we have proven a similar result
as claimed for the definitions: © = strip(0) and 9 = strip (9), (again with some abuse of notation). We
would like to have a generic theorem that would provide us with the above relations in one blow: Let A
be a definition of some higher order operator 8 and let A be the same definition, only without s,
defining an operator 8, (i.e. A= strip (Z). Then, under certain restrictions on the form of A we have
18 = sirip ().

In the next sections we will develop some theory in which these ideas are worked out.

170

3. Retractions

In this section we develop a little theory about pairs of cpo’s of which can be consider less abstract than
the other. We will give sufficient conditions under which the least fixed point of a transformation maps
on the least fixed point of its abstract version.

(3.1) DEFINITION Let D, D be cpo’s. D is called a retract of D if there exist two continuous mappings
i:DoD,j:DoDst jei=idp.

We write in the above situation D <, ; DorjustD <D. D <; D then i is an embedding and j
is strict. (Injectivity of i follows directly from j°i =idp; strictness of j follows from j(15) <p
j(Lp))=L1p.) Inthe contextof D <; ; D we call i the inclusion and j the retraction, respectively.

Consider the cpo’s D =, D = £« augmented with the stream ordering. Let i:D — D be the
inclusion and let j : D — D be defined by j = strip, cf. section 2. Then we have j°i(1) = strip(1) = 4
and j < i(0) = strip(0.€) =0. SoD <; ; D, ie. TL < grip 2.

The relation <; ; between cpo’s is - roughly speaking - one half of the subdomain ordering in the
category CPO. For the subdomain ordering there is the additional requirement that i°j <idp. See
[Pi).

Given cpo's D, D the pair of continuous functions i,/ s.t. D <;; D is not unique. It is already
the case (contrary to the subdomain ordering) that for fixed inclusion i there exist several retractions j
st. DS D. For example, take D = D = N U { o } together with the standard ordering. Define
i:D — D by i(d)=2d. Define ji,j2: D — D by jid) = Ld/2] and jod)=[d/2]. Clearly both j;
and j, are continuous and satisfy j1°i =idp, j2°i =idp.

(3.2) DEFINITION Suppose D <; ; D, E 4 E. A mapping $:D — E is called canonical if there
exists &: D — E such that /°$ = ¢°j. We define the function space D ~> E of canonical mappings
fromD toE byD ~>E ={$:D — E| ¢ canonical }.

If $: 5 — E is canonical, then there exists a unique ¢:D = E s.t. 1°¢ = ¢°j. For if
01.92: D S Ewithicdp=01°j=0¢,°jthenwehave ¢ =@ °jci =l°¢°i=02°j°i =¢2

If D is aretract of D, say D <; D, then we have an equivalence relation ~p on D (induced by
j) defined by d ~p d* & j(d)=j(d"). For $:D — E we reformulate canonicity in terms of the
equivalence relations ~p and ~g . We will have the equivalence of (i) &: D — E is canonical and
(i1) the induced mapping on equivalence classes ¢:D/~p o E/~g is well defined.

(3.3) LEMMA Suppose D <; D, E <¢q E. Then it holds that 6:D — E is canonical & Vdd’'eD:
d~pd = §d)~p §d").
PROOF "=" Choose 0:D —E st. 1°¢ = ¢°j. Letd,d’eD st. d~pd’, ie. jld)=jd).

171

Then we have 1($(d)) = ¢(j(d)) = 6(j(d") = I(B(d")), so &(d) ~£ b(d").
“" Define ¢:D - E by ¢ =I°¢°i. Let de D. Then we have §(i(j(d))) ~¢ $(d) and ¢(j(d)) =
1@ @) = 1(B(d)), since i (j(d)) ~p d. Conclusion: [°d=¢°j. O

The above lemma is not very deep but is is helpful in proving that D ~> E is a subcpo of the func-
tion space D — E, since in the presence of 3.3 the proof takes places “in the world of D and £."

(3.4) LEMMA Suppose D <; j D, E <¢ 1 E. ThenD —> E is a cpo.

PROOF Sufficient to prove: for a chain {¢,), in D ~> E is ¢ = lub, ¢, canonical. Suppose
d ~p d’. Then by continuity of / and canonicity of ¢,: I(§(d)) = I(lub, ¢n(d)) = luby 1($a(d)) =
Iuby 1(n(d) =1(luby ¢n(d")) =1(9(d"), s0 §(d) ~£ ¢(d"). O

Suppose D and E are retracts of D and E, respectively. The function space D — E then, will be a
retract of the function space D — E. More precisely, if D S,’J[j and E <4 E then
(D 5 E)<; (D > E)where I =\d.k°¢°j andJ =Ap.I°¢°i. Continuity of /,J follows from the
continuity of i through /. Furthermore J°/ = Ap.I°k°¢°j°i = Ap.ide°¢°idp = idp_,g. Analo-
gously, if V is a set of values and D S,-_jlj then V—D<;;V—>D where I=Ap.i°d and
J=Mp.j° 0. o

Notice, for ¢:D = E is I(¢): D - E canonical: if d ~p d’ then I($)(d) = k($(j(d))) =
k(@G (d"))) = 1(¢)(d’) and a fortiori I(9)}d) ~£ I($)(d"). So we have D — E < D ~> E. Moreover [
and J preserve continuity, ie. ¢e[D —E] = I@®elD -E)] and ¢e[DoE] =
J@e[D — E]. Therefore we have [D - E] <[D 3 E]. Combination of this two facts yields
[D~>E])<[D-~>E].

The notion of a retract was introduced here with the comparison of fixed points of higher order
transformations in mind. By virtue of theorem 3.6 below it would therefore be convenient to have
available a means for checking canonicity of these (higher order) transformations.

(3.5) LEMMA

(i) Choose cpo's D <;;D, E<yE. Fix ®:(D -E)—(D—E). Then it holds that
&:D~>E)~>D~>E) & Vo¢eD~->E Vdd'eD: ¢~pg ¢’ ~ d~pd =
B(0)(d) ~ DO'N).

(i) Let V be a set, DS;;D and fix ®:(V—-D)—>(V—>D) Then it holds that
D (VoaD)->V oD VeoeD ~>E YveV:p~youp ¢ = O)v) ~g BO)V).
PROOF We only check (). For &¥eD~>E we have b~pp¥ <

(d~pd =&d)~z Wd’)). For it holds that d~pory < I°h°i & I°§°i &

VdeD: 1(@i(d)) =1(§i(d)) < VdeD: §i(d)) ~g Wi(d)) & [d ~p d’ = §(d) ~¢ ¥(d")] since

VdeD:i(j(d)~-pd. O

Let ~ be the equivalence relation induced by strip on the several domains. We verify that
de (Conf — Est) ~> (Conf — E5t). Choose 0,0’¢e Conf — £t s.t. O ~ 0’ and pick C € Conf. If
C =(¢,06], then POC =6 ~6=H0’C. If C > C’ then ®OC = 1.0(C) ~ 1.0’(C) = PO’C since by

172

assumption O ~ 0" and x ~y = T.x ~ T.y.

Suppose D <; ; D, E <4 E and F <y F. Say E 5 F <k E - F where K =Ay.m°y°!
andL =Ay.no§ok. Then D - E - F ;D — E = F where 1¢dé = L(¢(d))é = m(¢(id)(ke))
and Jdde = K(&(id))e = n((id)(le)). Slightly more general we have, if Do < i, jDa for ae(1,..,n}
and E<x E ten D,—».-D,—E <5 Di—».-D,—E where I0d.dy =
k(®G1d)..(Gudy)) and JOd;.d, = 1(B(i1d))..(indn)). So for & (D1 .. =D, —E) -
(Dy—> . =Dy, —E) we have ® € (D,~> .. ~>Dy~>E) ~> (D1~>.~>D,~>E) &
di~1di ,...,dn ~ndn = ®dy..dy ~g ®di ..d;. We will use this unraveling of the notion of canoni-
city in section 5.

Finally in this section we arrive at the theorem that relates least fixed points of a transformation in
the function space D — D to the least fixed point of its retract in the function space D — D. This
theorem is strongly related to the Fixed Point Transformation Lemma. (See [BMZ], [Me].)

(3.6) THEOREM Suppose D <; ; D. Let &: D — D be cominuous and canonical. Put J ®)=0. Then
¢: D — D is cominuous with ¢ = j 19).

PROOF Clearly, ¢ is continuous by definition of J. By canonicity of ¢ we have ¢°/ = jeo
06 (@) =J @)U (@) = j @G (@) = j(§(d)) since i(j(d)) ~p d.

By induction on n we derive j($*(L5)) = ¢7(Lp). Basis, n=0: Directly from the stricmess of ;.
Induction step, n > 0: j(§(Lp)) = j($(@ULp)) = ¢ (@ 1(Lp)) = ¢(¢"~}(Lp)) = ¢"(Lp) by the
equality j°® = ¢°j and the induction hypothesis. By continuity of j we conclude: j(ud) =
J(lubg §(Lp)) = luby j(7(Lp)) = lubs 7(Lp) =po. O

4. Operational Semantics and Denotational Semantics for 5

In this section we introduce the abstract backtracking language $. This uniform language was studied
also in [BV] for it captures the control flow of PROLOG with cut, the latter being the main interest of
the particular paper. (See also [BK], [Vi], [Ba2] for similar uses of intermediate abstracta in deriving
sound denotational semantics for logic programming languages.) In the present paper however, we will
focus on the residue & on its own to serve as a case study for our method of comparing operational and
denotational semantics.

(4.1) DEFINITION Fix a set of actions Acfion and a set of procedure names Proc. We define the set of
elementary statements ESiat = { a, fail, !, s\1or sy x | aeAcion, s;e Sial, xe Proc }, the set of
statements Sia1 = { e):..;e, | reN, eje EStat } and the set of declarations Decl = { x151:..% e, |
reN, xje Proc, sje Stat, i # j = x; #x; }. The backtracking language # is defined by 3 = {dis|
de Decl,se Stat }.

Soa B program is a declaration together with a statement. Such a statement is a -possibly empty -
list of elementary statements of one of the formats action a, procedure variable x, explicit failure fail,
cut operator ! and alternative composition 51 or s2.

173

We let a range over Action, x over Proc, e over EStat, s over Stat and d over Decl. We write
xesedif xes =x;es; (for some i) orif s = M otherwise. (By this convention we do not have free
procedure variables in a statement, since every x is declared in d having by default the procedure body

fail)

(4.2) DEFINITION Fix a set I of states. Define the set of generalized statements by GStar =
{{s1,D1):..:(sr,D;)| reN, sjeStat, DjeStack }. Let y denote the empty generalized statement.
Define the set of frames by Frame = { [g,06]1 | g GStat, ce Z) and the set of stacks by Stack =
{Fi:..F,| reN,F;eFrame }.

Next we describe the operational meaning for 8. Consider the program d|s and a state 6. The
declaration d induces a transition system (also called d). The meaning O[dis J ¢ then will be the
stream of labels of the computation w.r.t. the transition system d starting from an initial configuration
associated with s and G.

We introduce the collection of Z-transiion systems TS by TS =
Stack = pars (Stack w L x Stack). For 1€ TS we shall write § —, S ift(S)=5"e Stack and S »F S’
if 1(S)=(0.5")e I x Stack. We fix an action interpretation [: Action — X ~pgn Z, that reflects the
effect of the execution of an action on a state. (The language & gains flexibility if actions are allowed
to succeed in one state, while failing in another.)

(4.3) DEFINITION Let d € Decl. d induces a transition system d in TS which is defined as the smallest
element of TS (with respect to C) such that
§Y) [y.01:S =§S
(ii) [{€.D):g.0]1:S 5a4lg.0]:S
(iii) [{a;s.D):g.61:S =4 [{s.D)g.0’]:S if " =I(a)o)exists
[{a;s,D).g,6]1:S —4 5 otherwise
(iv) [(@;s,D):g,o]:S =495
) [(t:;s,D):g,6]1:S 54[{s.D)g,6]:D
(vi) [(x%s,D):g,0]:8 =4 [{s'S)(s.D):g.0):S ifx’es’ed
(vii) [{s1ors2);s,DYg,0]:S —4 F1:F2:S where F; =[(s;;s,D):g,0] (i=1,2)

A stack S e Stack is a stack of alternatives. Each alternative, i.e. each frame, can be thought of as
hoiding a (partial) elaboration of an initial statement-state pair, also referred to as the original goal.
The top frame on the stack is the alternative to be tried first.

If the top frame F holds no proper statements, i.e. F =[7,0], the state ¢ is outputted on the tran-
sition, since the initial goal has been solved yielding o, and the computation continues with the alterna-
tives embodied by the remainder of the stack. (For we want to deliver all the answers for the initial
goal.) If the top frame does contain a proper statement, say F =[(s ,D):g,0], an intemnal transition is
made, that depends on the structure of s. The empty component (€, D) is just skipped.

In case of a;s the action interpretation / is consulted for the result of action a in state . If a
transforms G successfully into a new state ¢, the state of the frame F is changed accordingly and the

174

computation continues with the statement s in F. If a can not be executed successfully in state 0, i.e.
Iac is not defined, this will be a faiiure for the whole frame F: the alternative is pushed of the stack
and the computation continues with the alternatives left on the failure stack S. A explicit fail is han-
dled similarly.

A cut can always be executed with success. But, there is a side effect. To implement this side-
effect we make use of the cut information represented by the dump stack associated with a statement.
This dump stack contains the alternatives that were open at the moment the statement was introduced.
Executing a cut means restoring this aliernatives and amounts to removal of the alternatives that were
created after this (occurrence of) ! was introduced. So in the right-hand side the failure stack S will be
replaced by the dump stack D.

In case of a procedure call we apply body replacement. Thus we introduce a new statement, viz.
s’ in the top frame. Since S consists of the alternatives that are open at this creation time of 5” we
attach to s’ the stack S as its dump stack. In case of an alternative composition s; or 52 the to frame
splits into two frames. The uppermost corresponding to 51, the other associated with s7. So the alierna-
tive induced by s will be tried first.

Let I5 denote the cpo of streams over £. We will associate with a declaration d and its induced
transition system —,4 an answer function otg: Conf — Z¢ that for stacks S yields the concatenation of
the o-labels of the computation starting from C according to the transition system d. We use a higher-
order transformation &4 for a fixed point definition of ct4.

(4.4) DEFINITION Let d e Decl. Define ®4 € [(Conf = Ist) = (Conf — Z5)] by ®g(a)(E) =€,
D ()S) =a(S)if S 545", Dy(a)S) =c.a(S") if S -»§S5’. The answer function ag: Conf — Ist
associated with the Z-transition system d is defined by oy = lfp(Pa).

It is straightforward to check that & is well-defined, so indeed has a least fixed point. This answer
function is used to formulate the operational semantics for & .

(4.5) DEFINITION The operational semantics 0: 3 — £ — I for the backtracking language £ is
defined by 0 (dis)(6) = a4([{ s,E),0]) where a4 is the answer function associated with d.

(4.6) DEFINITION

(i) Domains: We define the set of failure continuations FCont = I, the set of cut continuations
CCont = I+, the set of success continuations SCont = [FCont — [CCont — £ — Z#t]], the set
of meanings Meaning = Stat — [SCont — [FCont — [CCont — X > Is]]]. We denote by
o, 9, x, £ and M typical elements of Z, FCont, CCont, SCont and Meaning , respectively.

(ii) Functions: The denotational semantics 2: 8 — L — I for the backtracking language B is
defined by 2 (dis)(0) = M4l s 1 &0 $oX o0 where &, = MpK6.G+¢ and §, = X, =€, where My is
the least fixed point of \¥; € [Meaning — Meaning] defined by
YaM[€] Epxo = Epxo
YiM[a] &dxo =Epxo’ if o’ =1(a)(0) exists
YiM[a JE&xo=¢ otherwise

175

WaM[fail 1E¢xo =¢

W M !] E0KG = Exxo
‘VdMﬂslngZH§¢K°=Ml[S_1]]é[MIISZ]lg‘PKC]KG
YiMIx 1Eoxo=M[s] {(MKEdkIdpo ifxesed
WaMile;s 1Epxo =M e] {M[s I E}oxo

We leave it to the reader to verify the well-definedness of ‘¥ but comment briefly on the intuition
behind the clauses above.

The transformation is triggered by the statement s. In case of an empty statement we consider the
initial goal to be So the success continuation is applied on the particular arguments. In case of a primi-
tive action a that transforms the state ¢ successfully into the state ¢’ we also apply the success con-
tinuation but now to the new state ¢’. If a fails in state o we deliver the failure continuation ¢ as a
denotation. Analogously for the explicit fail. A cut operator can always be executed successfully but
as a side effect the failure continuation is replaced by the cut continuation. For the aliernative composi-
tion we evaluate the first alternative s, according to the meaning M and add the other alternative s, on
top of the failure continuation. Procedure calls are handled by means of body replacement. The several
continuations are changed appropriately. A sequential composition is denoted by the meaning of its
first elementary statement while pushing the remainder into the success continuation.

The denotational semantics for & can be computed given a program d|s from the least fixed point
Mg of the wransformation W, using so called standard continuations. Note the format of the standard
success continuation £, = Apxc.G+¢. This will amount to delivering all remaining alternatives after
the first solution is computed.

5. Relating 0 and 2

In this section we will relate the operational and denotational semantics for & of the previous section.
This will be done similarly to the case of the simple while language of section 2: We extend the defin-
ing transformations @ and ¥ to less abstract transformations ® and . Using the result on retracts we
infer from the equivalence of ® and (an variant of) ¥ the equivalence of © and 9.

(5.1) DEFINITION The function strip : £% — I is defined by strip =puP where Pe [[£ 5 25] 5
[s — Es]] is defined by PpL= 1, Ppe = ¢, Ppo.x = 6.px, Pptx = px.

So strip substitutes € for finite many t's and L for ® many. By continuity of strip we can easily
check the distributivity of strip over ., i.e. strip(x ey) =strip(x)estrip(y).

(5.2) LEMMA X¥ is a retract of Tt

PROOF By continuity of strip and the inclusion mapping incl: I% — Est it suffices to show
stripeincl = idya, ie. VxeXs: strip(x)=x. It is straight forward to show by induction on n: (*)
VneNVxeZr UEn.L: strip(x)=x. Now choose xe Is' arbitrary. Let (x,), be a chain in
Z* U Z*.1 with least upperbound x. Then we have by continuity of strip and by (*): strip(x) =

176

lub, sirip(xy) = lubp x; =x. O

In the remainder of this section we choose all the retractions, based on sirip and incl, denoted by
1.J (but also by strip), using the construction for function spaces as described after lemma 34.

We continue with the extension of the operational semantics. Now for all transitions we will have
a label from £. But except for this, definitions 4.3 and 5.3 are the same. So for example, we again
make use of the action interpretation / : Action — T —pgr; to establish the behaviour of an action a in
a state 6. Furthermore, let TS denote the collection of £-transition systems Stack — pan £ X Stack. We
use similar conventions as for Z-transition systems.

(5.3) DEFINITION Let d € Decl. d induces a transition system d in TS which is defined as the smallest
element of 7S (with respect to) such that
(Y] [v.01:8 =8S$
(i) [{e,.D):g,06]1:8 =%[g,01:S
(iii) {(a;s.D)g,01:S -51(s.D)g,0’]:§ ifc’=1(a)(0)exists
[{a;s.D).g,0]:S —»5S otherwise
(iv) [(@;s,D):g,o] $-5S
v) [(;s,D):g,0]:S =)[(s.D)g.0]:D
(vi) [{(x%5.D)g,01:S o) [(s"S)(s,D)g,0]1:S ifxr'es’ed
(vii) [{(s10rs2);5.D)g,0]1:8 5§ F1:F2:S where F; =[{si5s ,D).g,6] (i=1,2)

We shall associate with a declaration d an answer function &4: Stack — $st that for stacks S
yields the concatenation of the all the labels of the computation starting from S according to the transi-
tion system d. As before we use a higher-order transformation &, for a fixed point definition of &g4.
Note that we presently also demand canonicity for the ransformation b,

(5.4) DEFINITION Let d e Decl. Define ®4 € [(Stack — £) ~> (Stack — £1)] by ®4(a)E) =€,
®4(0)(S)=0-0(S") if § =9 S”. The answer function &g: Stack — 5t associated with the £-transition
system d is defined by &4 = nd,.

Canonicity of &, (as is also the case for its continuity) is straightforward to check: Let
a0’ Stack 5 % st. o~o’. To show: ®4(0) ~ Pa(o), ie. VSeSwack: sirip(®4(0)(S)) =
sirip(®4(o')(S)). Let Se Stack. Wlog S#E. Say § —8§8’. Then we have strip(®a(0)(S)) =
sirip (0 0(S”)) = strip(0) e strip(e(S”)) = strip (8) « strip (0’($9) = strip(0.a'(S")) = sirip (®4(c)(S))
since a(S’) ~ o(S") by assumption.

The pleasant property of the new transformation ®, as was elaborated upon before, is the unique-
ness of its least fixed point.

(5.5) LEMMA For all d e Decl : &, has a unique fixed point.
PROOF Let de Decl. Uniqueness of ud,, which exists by continuity of &, follows from

177

VS € Stack, for this implies maximality of pds: &4(S)eE*UEe. Let Se¥ = (Se Stack |
a4(5)e £*.1 } be of minimal length. Then S #E, so § —§ S’ for some 6e £, §’e Stack. But then
&4(S)eZ* L is of length strictly less than &4(S). Conclusion: ¥ is empty, so VS e Stack:
ag($)e*uie o

Next we check that the new answer function &4 derived from ‘i‘d equals the old answer function
o4 derived from W4 modulo clock ticks T.

(5.6) LEMMA For d € Decl, strip(6.q) = a4.

PROOF Let de Decl. By theorem 3.6 it suffices to show: s:rip(i)d) =®,. This is clear, since
Vae Stack —» X, S € Stack: J(®g)(a)(S) = strip (D4(a)S)) = strip(e) = € = ®y(a)S) if S =E, and
J (@ 4)(a)(S) = strip (D 4(e)(S)) = strip (B + (S)) = strip (8) « strip (0(S)) = B} S) if § »§ §”. O

Next we formulate the extension of the higher order transformation ‘Y. Note that we restrict not
only to "continuous” continuations but rather to both "continuous and canonical” ones.

(5.7) DEFINITION

(i) Domains: We define the set of failure continuations FCont~ = £, the set of cut continuations
CCont™ = £, the set of success continuations SCont™ = [FCont™ ~> [CCont™ ~> L —» ¥5] 1,
the set of meanings Meaning = Stat — [SCont™ ~> [FCont™ ~> [CCont™ ~>Z~>£51]] 1. We
denote by G, ¢, x, £ and M typical elements of £, FCont™, CCont™, SCont™ and Meaning™, respec-
tively.

(ii)) Functions: Let deDecl. By My we denote the least fixed point of ¥y €
[Meaning™ ~> Meaning™] defined by
PM[e] Epxo = 1-EpKo
P M a 1 Eoxo =1-Edpxo’ if 0 =1 (a)(O) exists
WY M{a]Ebxo =1.¢ otherwise
YaM{ fail 1 Epxo =10
M !]1Edxo = 1.Ekxo
WM sy 0rs2] §oxo =1-M[51 1E(MI s21E¢xo)xo
WM x D1EoxG =1-M[s] (MELIKIOO0 ifresed
PaMe;s JEoxo =M e 1 (ML s 1&)oxo

Again it is noteworthy that definitions 5.6 and 6.7 are the same except for occurrences of T.

It is a matter of routine to check VM e Meaning™: ¥ M €
Stat > [SCont = [FCont > [CCont £ £%]1]] and that moreover VM ,M’e Meaning™ s.t
M ~M’, VseStat, VEE € SCont™ st E~E, Vo,0'e FCont™ st ¢~ ¢, VK x'e CCont™ st x~X,
Voe & W MsEdxo ~ PyM'sE'9Cs. Soby 3.5 ¥, is well-defined.

(5.8) LEMMA For all d e Decl we have sirip(Mg) =M 4.
PROOF Let d e Decl. By theorem 3.6 it suffices to show J (P4) = ¥y, ie. for M € Meaning,
se Stat, &e SCont, e FCont, xe CCont, Ge X it holds that J¥ ;M[s] Edxo = WM[s] Epxo.

178

This can be done by a straightforward calculation (relying heavily on the remark at the end of section 3)
of which we shall exhibit only a typical case where s = x”.

Say X es'ed. JOM[x’] Edpxo = J(D UM X’ T UEYI DU ¥)O =
JE-UMs" T {MRUENUI JUDUDS) = JE-UMIs" I LIMKEYK) JUPUPo) =
JOJIMI s T { M EOC)000) = M[s*] [MK Ed'K J¢¢o = Pyl x § Edxo. Here we have
used MKAEPIKX) = MEEJOUK) = MEEJOK = I E9%) and UM s 1 (EU K)o =
M s TUIEYJIOWIIK)G =1(M[s 1 E¢xo). O

The last step towards the equivalence theorem below is the formulation of the intermediate func-
tion ¥ defined on configurations which extends M.

(5.9) DEFINITION Let deDecl. The mappings #4: Conf - ist, Frame — FCom™ ~> Es,
GStat — FComt™ ~> £ > &5t are defined as follows: FJET =¢;
F4lF:SD=340FD{540850) Fallgolo=F4l¢ 160 Falvloo=0.¢;
Fall{s.D)g1oo=Mals1{MxFalg1016{FalD] Jo.

We leave it to the reader to check the well-definedness of F4. We will check that F4 is a fixed
point of the transformation ®,. Therefore by lemma 5.5 we have that 3 4 and &4 coincide.

(5.10) LEMMA For d e Decl we have ®4(34) =% 4.
PROOF Let de Decl. We have to verify DHFHIST] = F4l S 1 for each stack S. We only
treat the case [{ x";s,D):g,6]:S leaving the other (similar and easier) cases to the reader.

Fal1(x"5.D 2.61:S 1 = Ml x’ J{MaLs NE VN FaS M FaD o =
TeMalls’' T (MxMyLs BEN FaD) H F4S l_ms lo) =
oMl s’ T {MxFal[(s.D gD N FaSHFaSlo = 1oFall(s"S)(sD)gl:ST =

&3 401 (x"s.D):g.61:S 1 where E=MxF4[g1¢. O

Finally we have arrived in a position in which we are able to compare the operational and denota-
tional semantics for the abstract backtracking language 3.

(5.11) THEOREM 0 = 9

PROOF Let dise ®. By uniqueness of the fixed point of @, and the above lemma we have
4=Gg. So it follows that &[[{s.EX61] = JFall(s,E)ol] =
Malls T {MxFalyB0 N FaE NF4E)0 = Mals](Mxo-¢leec = Mals 180 ¢o%o0.
Finally by the lemmas 5.6 and 5.8 we arrive at Ofldis]o = ogl[(s.E)o0]] =
strip (&4l [{s.E)61 1) =strip(Mal s 180 95%00) =Mal s D& 0oXo0 =D dis J 0. O

6. References

[Bd]. M. Badinet, “‘Proving Termination Properties of PROLOG Programs: A Semantic
Approach,”’ pp. 336-347 in Proc. LICS’ 88, Edinburgh (1988).
[Ball. J.W. de Bakker, Mathematical Theory of Program Correciness, Prentice Hall International,

(Ba2].

179

London (1980).

J.W. de Bakker, ‘‘Comparative Semantics for Flow of Control in Logic Programming
without Logic,”” Report CS-R8840, Centre for Mathematics and Computer Science, Amster-
dam (1988).

[BBKM]. J.W. de Bakker, J.A. Bergstra, J.W. Klop, and J.-J.Ch Meyer, ‘‘Linear Time and Branching

[BK].

Time Semantics for Recursion with Merge,"’ Theoretical Computer Science 34, pp. 135-156
(1984).

J.W. de Bakker and J.N. Kok, ‘‘Uniform Abstraction, Atomicity and Contractions in the
Comparative Semantics of Concurrent Proleg,”” in Proc. FGCS'88, Tokyo. (1988).

[BKMOZ]. J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, and J.I. Zucker, *‘Contrasting

[BM].

(BMZ).

[BZ].

[BV].

{DM].

[IM).

(KR].

[Mel.

[MV].

[P1].

[vil.

Themes in the Semantics of Imperative Concurrency,’’ pp. 51-121 in Current Trends in Con-
currency: Overviews and Tutorials, ed. JW. de Bakker, W.P de Roever & G. Rozenberg,
LNCS 224, Springer (1986).

J.W. de Bakker and J.-J.Ch. Meyer, ‘‘Metric Semantics for Concurrency,’’ BIT 28, pp. 504-
529 (1988).

J.W. de Bakker, J.-J.Ch Meyer, and J.I Zucker, ‘‘On Infinite Computations in Denotational
Semantics,"’ Theoretical Computer Science 26, pp. 53-82 (1983).

J.W. de Bakker and J.I. Zucker, ‘‘Processes and the Denotational Semantics of Con-
currency,’’ Information and Control 54, pp. 70-120 (1982).

A. de Bruin and E.P. de Vink, ‘‘Continuation Semantics for Prolog with Cut,’’ pp. 178-192 in
Proc. TAPSOFT' 89, ed. J. Diaz & F. Orejas, LNCS 351 (1989).

S.K. Debray and P. Mishra, ‘‘Denotational and Operational Semantics for Prolog,”” Journal
of Logic Programming S, pp. 61-91 (1988).

N.D. Jones and A. Mycroft, ‘‘Stepwise Development of Operational and Denotational
Semantics for Prolog,”” pp. 281-288 in Proc. Symposium on Logic Programming, Atlantic
City (1984).

J.N. Kok and J.J.M.M. Rutten, ‘‘Contractions in Comparing Concurrency Semantics,”’ pp.
317-332 in Proc. ICALP’88, ed. T. Lepisto & A. Salomaa, LNCS 317, Springer (1988).
J.-J.Ch. Meyer, Programming Calculi Based on Fixed Point Transformations: Semantics and
Applications, Dissertation, Vrij Universiteit, Amsterdam (1985).

J.-J.Ch. Meyer and E.P. de Vink, ‘*Applicatons of Compactness in the Smyth Powerdomain
of Sweams,”” Theoretical computer Science 57, pp. 251-282 (1988).

G.D. Plotkin, ‘“The Category of complete Partial Orders: a Tool for Making Meanings,”” in
Proc. Summer School on Foundations of Artificial Intelligence and Computer Science , Pisa
(1978).

E.P. de Vink, ‘‘Comparative Semantics for Prolog with Cut,”’ Report IR-166, Vrije Univer-
siteit, Amsterdam (1988).

